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Abstract

The rewetting of dry soils and the thawing of frozen soils are short-term, transitional
phenomena in terms of hydrology and the thermodynamics of soil systems. The im-
pact of these short-term phenomena on larger scale ecosystem fluxes has only recently
been fully appreciated, and a growing number of studies show that these events affect5

various biogeochemical processes including fluxes of soil gases such as carbon diox-
ide (CO2), methane (CH4), nitrous oxide (N2O), ammonia (NH3) and nitric oxide (NO).
Global climate models predict that future climatic change is likely to alter the frequency
and intensity of drying-rewetting events and thawing of frozen soils, highlighting the
importance of understanding how rewetting and thawing will influence soil gas fluxes.10

Here we summarize findings in a new database based on 338 studies conducted from
1956 to 2010, and highlight open research questions. The database revealed conflict-
ing results following rewetting and thawing in various terrestrial ecosystems, ranging
from large increases in gas fluxes to non-significant changes. An analysis of published
field studies (n=142) showed that after rewetting or thawing, CO2, CH4, N2O, NO and15

NH3 fluxes increase from pre-event fluxes following a power function, with no signif-
icant differenced among gases. We discuss possible mechanisms and controls that
regulate flux responses, and note that a high temporal resolution of flux measurements
is critical to capture rapid changes in gas fluxes after these soil perturbations. Finally,
we propose that future studies should investigate the interactions between biological20

(i.e. microbial community and gas production) and physical (i.e. flux, diffusion, disso-
lution) changes in soil gas fluxes, and explore synergistic experimental and modelling
approaches.

1 Introduction

The rewetting of dry soils, or the thawing of frozen soils, represents an abrupt step25

change in soil biophysical conditions, with implications for biogeochemical cycling.
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From an organismal perspective, soil rewetting and thawing have similar effects be-
cause both processes increase the availability of soil water, rehydrate cells, and mo-
bilize nutrients. Both processes are also relatively transient, and the duration of indi-
vidual rewetting and thawing events varies as a result of the effects of local climatic
conditions, topography, drainage, vegetation type, and soil thermal properties (Balser5

and Firestone, 2005; Vargas et al., 2010b). The sudden flush of water and nutrients
that occurs after rewetting and thawing precipitates major changes in plant and micro-
bial activity, with organisms shifting rapidly from dormant or senescent states to active
ones (Kieft et al., 1987; Schimel and Clein, 1996; Kemmitt et al., 2008).

It is important to understand the change in fluxes of soil gases (i.e. CO2, CH4, N2O,10

NO and NH3) following rewetting and thawing events, as these soil gases are either by-
products, intermediates, or end-products of soil-related microbial processes involved
in C and N dynamics in soils. These gases also play crucial roles in atmospheric
chemistry and CO2, CH4 and N2O gases are greenhouse gases (GHG). Furthermore,
future climatic change is likely to alter the frequency and intensity of drying-rewetting15

events and thawing of frozen soils (Meehl et al., 2006; Sheffield and Wood, 2008; Sinha
and Cherkauer, 2010). The frequency and intensity of soil frost (i.e. annual soil freezing
days and freeze-thaw cycles) are also likely to be modified since warming could lead
to a reduction in the thickness of the insulating snowpack and thus colder winter soil
temperatures (Henry, 2008; Gu et al., 2008). It is important to understand how soil20

rewetting and thawing influences soil GHG fluxes, because increases or decreases in
these fluxes may contribute to either positive or negative feedbacks to climate change.

While abrupt increases in soil CO2, N2O, NH3 and NO fluxes following rewetting are
commonly observed in various agricultural lands and natural lands (Priemé and Chris-
tensen, 2001; Saetre and Stark, 2005), rewetting can either increase (Moore, 1998;25

Knorr et al., 2008) or inhibit (Kessavalou et al., 1998; Teh et al., 2005) CH4 oxida-
tion. Similarly, increases in CO2, CH4 and N2O fluxes following soil thawing have been
shown to affect total annual gas budgets (Röver et al., 1998; Papen and Butterbach-
Bahl, 1999). Despite this growing number of studies, there are still uncertainties in
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our understanding of the mechanisms and impacts on annual gas budgets. These un-
certainties are exacerbated by the coarse temporal sampling resolution in most flux
measurements that do not capture the dynamics of the pulse (Groffman et al., 2006;
Muhr et al., 2009), and by unrealistic simulations of dry-wet and freeze-thaw events
(Henry, 2007; Jentsch et al., 2007). These limitations are important for our under-5

standing of soil GHG fluxes because even single pulse events have been shown to
contribute substantially to annual fluxes (Lee et al., 2004; Xu et al., 2004).

The growing number of studies on the separate effects of rewetting and thawing
specifically on CO2 and N2O fluxes have been the focus of several reviews (Henry,
2007; Matzner and Borken, 2008; Borken and Matzner, 2009; Groffman et al., 2009).10

This review is novel in that it takes a comprehensive approach in dealing with the effect
of both rewetting and thawing on multiple soil gas fluxes (CO2, CH4, N2O, NO and
NH3), creates a new database on published studies, and identifies knowledge gaps
and current research challenges. Our objectives were to: (1) summarize the effects
of rewetting and thawing on multiple soil gas fluxes (CO2, CH4, N2O, NO and NH3)15

and highlight common patterns across studies; (2) discuss the underlying mechanisms
and drivers of responses; (3) identify knowledge gaps and highlight future research
questions.

2 Methodology

2.1 Data collection20

Data on changes in gas fluxes of CO2, CH4, N2O, NO and NH3 following rewetting
and thawing were acquired by searching existing refereed literature published between
1950 and 2010 using Web of Science and Google Scholar with search terms such as
“rewetting”, “thawing”, “peak flux”, “peak emission” and name of gases. Field observa-
tions of rewetting of dry soils include events caused by natural rainfall, simulated rainfall25

in natural ecosystems, and irrigation in agricultural lands. Similarly, thawing of frozen
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soils include field observations of natural thawing, simulated freezing-thawing events
(i.e. thawing of simulated frozen soil by snow removal), and thawing of seasonal ice in
temperate and high latitude regions. We included both field and laboratory studies, but
did not include the longer term effects of changing active layer depths in this review, as
changes in gas fluxes in response to permafrost thaw are affected by both changing5

soil and plant successional processes (Turetsky et al., 2007). The resulting data set
comprised 222 field and laboratory observations focused on rewetting of dry soils, and
116 field laboratory observations focused on thawing of frozen soils.

2.2 Determining individual gas flux change rates and overall change

For studies that reported temporal changes in gas flux rates pre- and post rewetting10

or thawing events in a single treatment (Fig. 1a), we calculated the change in gas flux
rates (%) using the flux values observed before the event (i.e. rewetting or thawing)
along with peak flux values that occurred post-event:

Flux change =
(Peak fluxpost−event)− (Fluxpre−event)

(Fluxpre−event)
×100 % (1)

where Flux change (%) is the relative effect of the event on gas flux, Peak fluxpost−event15

is the rate of peak gas flux following the event and Fluxpre−event is the rate of gas
flux before the event (i.e. rewetting or thawing). For studies that compared gas fluxes
between simulated (representing either rewetting or thawing treatments) and control
treatments (Fig. 1b), we calculated changes in gas fluxes exactly as in Eq. (1) but
using Peak fluxExp (the rate of peak gas flux following the treatment) and FluxControl20

(the rate of gas flux observed at the control at the time peak gas flux).
Overall, change rates of CO2, CH4, N2O, NO and NH3 fluxes of pre- and post rewet-

ting and thawing events were determined by fitting linear models to the relationship
between Fluxpre−event and Peak fluxpost−event for both rewetting and thawing events. All
analyses were performed using R 2.12.1. (R Development Core Team, 2010). If gas25

fluxes were presented only in a figure without numeric values reported in text or tables,
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we calculated the corresponding values from the figure using the software Acrobat 8
Professional ver. 8.2 (Adobe Systems, Inc. San Jose, CA, USA).

3 A review of the effect of rewetting and thawing on soil gas fluxes

For each soil gas we discuss below: (a) how rewetting and thawing events influence
gas fluxes in multiple ecosystems and in experimental settings; and (b) the likely mech-5

anisms and environmental controls underlying the observed patterns.

3.1 Carbon dioxide flux from rewetting and thawing

3.1.1 General patterns of responses

Soil surface CO2 flux (RS) provides an integrated result of biological CO2production
throughout the soil column, changes in soil CO2 diffusivity in the soil profile, and in10

some areas geological processes. Soil CO2 is produced primarily by both heterotrophic
(i.e. decomposer organisms) and autotrophic activity (i.e. living roots and mycorrhizae)
(Raich and Schlesinger, 1992; Schlesinger and Andrews, 2000).

Increases in RS following rewetting of dry soils have been reported in multiple ter-
restrial ecosystems and various land-use types, including pulses observed in crop-15

land (Kessavalou et al., 1998), grazing pasture (Xu and Baldocchi, 2004), forest (Kim
et al., 2010b), grassland (Joos et al., 2010), savannas (Castaldi et al., 2010), and
desert (Sponseller and Fisher, 2008). Incubation experiments have yielded similar pat-
terns, showing RS increases in soils from cropland (Beare et al., 2009), grazing pasture
(Wu et al., 2010b), forest (Fierer and Schimel, 2003), grassland (Xiang et al., 2008),20

peatland (Goldhammer and Blodau, 2008) and desert (Sponseller and Fisher, 2008)
ecosystems. For example, in an upper Sonoran Desert ecosystem, RS increased up
to 30-fold immediately following experimental rewetting, and within 48 h returned to the
rate of gas flux before the event (Sponseller, 2007). In soil moisture manipulations in
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a Norway spruce plantation, drought and rewetting treatments increased the annual
CO2 flux by 51 % compared with a control plot (Borken et al., 1999). Lee et al. (2004)
estimated that the increase in RS in a single intensive storm amounted to a loss of
0.18 t C ha−1 to the atmosphere, or 5–10 % of the annual net ecosystem production in
a mid-latitude forest. These studies have reported responses ranging from short-term5

(ca. 6–24 h) up to 30 d responses (Table 1, Fig. 4), and relative RS changes ranging
from 40 % to >10 000 % increases (Table 1, Fig. 2). Together, these studies support
the hypothesis that rewetting a variety of soil types can have substantial effects on the
C balance of terrestrial ecosystems (Borken et al., 1999; Lee et al., 2004; Xu et al.,
2004). However, we caution that most of these studies lack the high temporal sampling10

resolution necessary to capture the full dynamic of the pulse (Groffman et al., 2006;
Muhr et al., 2009; Vargas et al., 2011).

Increased RS after thawing has been observed in various terrestrial ecosystems in-
cluding forest (Wu et al., 2010a), alpine tundra (Brooks et al., 1997), and arctic heath
(Elberling and Brandt, 2003), and in incubation experiments with soils from cropland15

(Kurganova et al., 2007), grassland (Wu et al., 2010b), forest (Goldberg et al., 2008),
bog (Panikov and Dedysh, 2000), taiga and tundra (Schimel and Clein, 1996), and
Antarctica (Zhu et al., 2009). Reported CO2 flux increases after thawing can range up
to 5000 % (Table 1, Fig. 2). Such increases in CO2 flux after seasonal thawing were
important to the annual budget of CO2 flux in arable soils (Priemé and Christensen,20

2001; Kurganova et al., 2007), but did not affect the annual budget in some natural
sites (Coxson and Parkinson, 1987; Schimel and Clein, 1996; Neilsen et al., 2001).

It is important to recognize that RS could be suppressed during or after rainfall as pre-
vious studies have reported: (1) large (10-fold) decreases during light rainfall in arable
soils (Rochette et al., 1991), and (2) sharp RS decreases in no-tillage agricultural fields25

(Ball et al., 1999). Possible explanations for these reduced RS rates are: (1) increased
water in the soil pore space reduce soil CO2 diffusivity rates (Rochette et al., 1991;
Šimnek and Suarez, 1993), and (2) the restriction of the soil macro-porosity by the
rainfall reduces soil air-filled pore space enhances anaerobiosis and reduces aerobic
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respiration (Linn and Doran, 1984; Ball et al., 1999; Davidson et al., 2000). Similar to
the rewetting of soils, CO2 diffusion and production could be affected by an increase
of water in the soil pore space after thawing, creating anaerobic conditions that lower
autotrophic and heterotrophic respiration. In the following sections we focus on the
positive impact of rewetting and thawing on RS.5

3.1.2 Mechanisms and drivers

Two broad mechanisms responsible for increased RS following rewetting and thawing
have been commonly hypothesised: (1) enhanced substrate supply, and (2) changes in
physical protection of organic matter. First, microbial metabolism can be enhanced by
the availability of accumulated substrates during soil drying periods. A large proportion10

of microorganisms, fine roots and mycorrhiza die during drought and frozen conditions
(Clein and Schimel, 1994; Teepe et al., 2001; Wolf et al., 2010 supplementary infor-
mation); these dead cells tend to have low C:N ratios and could rapidly decompose
during rewetting (Kieft et al., 1987; Van Gestel et al., 1993) and thawing (Priemé and
Christensen, 2001; Yergeau and Kowalchuk, 2008). Microorganisms accumulate high15

concentration of solutes (osmolytes) to retain water inside the cell during drought con-
ditions (Harris, 1981), which rapidly decompose on rewetting (Fiere and Schimel, 2003;
Schimel et al., 2007). Furthermore, root exudates from reviving plants following rewet-
ting could significantly affect soil surface flux (Crow and Wieder, 2005; Curiel Yuste
et al., 2007). Second, rewetting and thawing could disrupt soil aggregates, exposing20

physically protected organic matter and increase the accessibility of substrate that can
be rapidly mineralized (Groffman and Tiedje, 1988; Appel, 1998; Pesaro et al., 2003;
Grogan et al., 2004). Other physical mechanisms that can influence gas flux include
infiltration, reduced diffusivity, and gas displacement in the soil (Jensen et al., 1996;
Huxman et al., 2004). For example, the infiltration of rainwater may displace CO2 that25

accumulates in soil pore spaces during dry periods (Huxman et al., 2004).
The relative contribution of autotrophic or heterotrophic activity to changes in CO2

fluxes following rewetting and thawing is still poorly understood. In a Mediterranean
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dehesa, autotrophic activity was dominant during drought periods but heterotrophic
activity became dominant in CO2 fluxes following rewetting (Casals et al., 2011).

The magnitude of RS increases following rewetting may depend on: (1) the size of
the soil organic pool; (2) the quality of organic matter, determined by its age, origin, and
the extent to which these substrates are protected from microbial attack by adsorption5

to clay surfaces and inclusion in micro-aggregates; and (3) the properties of soil biota
(Van Gestel et al., 1993). Soil moisture conditions before rewetting also influence the
response (Orchard and Cook, 1983; Cable et al., 2008), as can the length and severity
of drought periods (Unger et al., 2010), and rain pulse size (Sponseller, 2007; Chen
et al., 2009). Based on our literature review, we identified the existence of a threshold10

in soil moisture at 12–20 % gravimetric moisture content, below which a substantial
increase in RS after rewetting is typically observed (Davidson et al., 1998; Xu and Qi,
2001; Rey et al., 2002; Yuste et al., 2003; Dilustro et al., 2005; Cable et al., 2008; Chou
et al., 2008; Kim et al., 2010b; Misson et al., 2010; Rewetting, thawing and soil gas
fluxes database in Sect. 6. The effects of rewetting may decline with successive drying15

and rewetting cycles, possibly as a result of a limited pool of labile substrates that have
built up over time or during the dry season (Schimel and Mikan, 2005; Goldberg et
al., 2008). Importantly, Fernández et al. (2006) suggested that substrate availability,
rather than soil moisture, influenced the duration of the CO2 pulse in response to rain
events, while Vargas et al. (2010b) noted that RS pulses may be driven not only by20

labile substrate availability, but also by plant photosynthesis rates following the rain
event. In addition, management practice (mowing or tillage) (Steenwerth et al., 2010),
vegetation type (Shi et al., 2011) and high soil temperatures (Jager and Bruins, 1975;
Borken et al., 1999) could influence the magnitude of the response of soil CO2 flux
following rewetting of dry soils.25

Studies show that the magnitude of increased RS following thawing is controlled by
characteristics of thawing events. For example, colder temperatures have been shown
to increase RS (Matzner and Borken, 2008; Goldberg et al., 2008). Another known
factor is freeze-thaw cycle frequency, where the largest RS increase commonly occurs
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in the first thawing event (among repeated freezing–thawing cycles) with the effects
declining in following cycles (Kurganova and Tipe, 2003; Goldberg et al., 2008).

3.2 Methane flux from rewetting and thawing

3.2.1 General patterns of responses

Net CH4 flux is the result of the balance between methanogenesis (microbial produc-5

tion under anaerobic conditions) and methanotrophy (microbial consumption) (Dutaur
and Verchot, 2007). Methanogenesis occurs via the anaerobic degradation of organic
matter by methanogenic archaea within the archaeal phylum Euryarchaeota (Thauer,
1988). Methanotrophy occurs by methanotrophs metabolizing CH4 as their source of
carbon and energy (Hanson and Hanson, 1996). In anoxic soils, emergent vegeta-10

tion also influences CH4 flux to the atmosphere, as plants enable oxygen transport to
the rhizosphere, through aerenchymateous tissue, and through the production of labile
substrates via root exudation (Joabsson et al., 1999).

The reported effects of rewetting on CH4 fluxes are variable. Rewetting reduced CH4
consumption or increased CH4 production in arable land (Syamsul Arif et al., 1996;15

Kessavalou et al., 1998; Hergoualc’h et al., 2008), peatland (Kettunen et al., 1996; Blo-
dau and Moore, 2003; Dinsmore et al., 2009) and tropical forest (Silver et al., 1999). In
a wheat-fallow cropping system, CH4 consumption declined by about 60 % for 3–14 d
after rewetting (Kessavalou et al., 1998). In peatland, a pulse of CH4 was observed
after water table drawdown (Moore and Knowles, 1990; Shurpali et al., 1993), and20

substantial pulses of CH4 fluxes were produced with both drainage (700 µg m−2 h−1

above the pre-change mean) and rewetting (over 160 µg m−2 h−1 above the value of
prior to rewetting) within 1–2 days in a mesocosm study (Dinsmore et al., 2009). In
contrast, other studies have reported that rewetting increased CH4 consumption, or
reduced CH4 production, both in the field (Davidson et al., 2004, 2008; Borken et al.,25

2006; Fiedler et al., 2008) and laboratory (Czepiel et al., 1995; West and Schmidt,
1998). In incubation experiments with alpine soil, CH4 oxidation increased significantly
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from 11 pmol CH4 (g dry weight)−1 h−1 to −67.0 – −29.5 pmol CH4 (g dry weight)−1 h−1

9 days after rewetting (West and Schmidt, 1998). Enhanced CH4 oxidation was pro-
moted after rewetting for days to weeks in peatland (Öquist and Sundh, 1998; Kettunen
et al., 1999; Goldhammer and Blodau, 2008) and rice field (Ratering and Conrad,
1998). However, in an in situ water table drawdown experiment, CH4 production de-5

clined in hummocks but stayed constant in hollows relative to control plots, suggesting
a strong role of plant-mediated release of CH4 in some peatland microforms (Strack
and Waddington, 2007).

Similar to the rewetting of soils, the reported effects of thawing on CH4 fluxes are
variable. Seasonal soil thaw increased CH4 flux in peatland (Tokida et al., 2007), for-10

est (Kim and Tanaka, 2003), and wetlands (Friborg et al., 1997; Song et al., 2006;
Ding and Cai, 2007; Yu et al., 2007). In a subarctic peatland, CH4 flux increased from
2.6 mg m−2 d−1 to 22.5 mg m−2 d−1 during thawing, with the latter rate equivalent to ap-
proximately 25 % of the mid-summer flux (Friborg et al., 1997). A few studies have also
shown enhanced CH4 consumption during seasonal thawing periods (Ding and Cai,15

2007; Wu et al., 2010b). In addition to affecting rates of CH4 production and oxidation,
seasonal soil thaw also may affect CH4 transport mechanisms (Friborg et al., 1997; Kim
and Tanaka, 2003; Tokida et al., 2007). For example, surface seasonal thawing in a
bog appeared to trigger ebullition events, with flux up to 25.3 mg CH4 m−2 h−1(Tokida et
al., 2007). In Alaskan boreal forest soils damaged by fire, CH4 flux increased 7–142 %20

during seasonal thawing (Kim and Tanaka, 2003). While beyond the scope of this pa-
per, we note that as with seasonal thaw, longer term increases in an active layer depth
with permafrost thaw also tend to increase CH4 flux in high latitude wetlands and lakes
(Turetsky et al., 2002; Christensen et al., 2004; Walter et al., 2006; Anisimov, 2007).
In summary, studies report a large uncertainty in CH4 responses after rewetting and25

thawing, and there are much smaller responses in magnitude but fewer observations
compared with other gases (Table 1, Fig. 2).
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3.2.2 Mechanisms and drivers

In general, CH4 production rates are controlled by the availability of suitable substrates,
alternative electron acceptors for competing redox reactions (i.e. sulfate reduction), the
nutritional status of the ecosystem (i.e. bog versus fen), water table position or soil
moisture content, temperature, and soil salinity (Thauer, 1988; Hanson and Hanson,5

1996; Dutaur and Verchot, 2007).
The mechanisms and drivers underlying changes in CH4 flux following rewetting and

thawing are complex because they involve the response of both methanogenesis and
methanotrophy to changes in availability of substrates, soil environment, particularly
soil moisture, and availability of electron donors and acceptors that determine the re-10

dox status of soil. Rewetting can increase the availability of water-soluble C substrates
(Zsolnay and Görlitz, 1994; Stark and Firestone, 1995) that are being used by soil
methanotrophs (Whittenbury et al., 1970). In unfrozen soils, there was no correlation
between soil temperature and CH4 consumption, suggesting strong substrate limitation
on methanotrophs (Borken et al., 2006). Borken et al. (2006) also found that methan-15

otrophs were stressed when water contents were below 0.15 g cm−3 (in the A horizon),
thus rewetting could alleviate osmotic stress and promote the growth and activity of
soil methanotrophs (Schnell and King, 1996; West and Schmidt, 1998). While sev-
eral studies have shown that experimental drought increased CH4 consumption rates
(cf. Borken et al., 2006; Davidson et al., 2008), Fiedler et al. (2008) found no evidence20

of increased methanotrophy in response to natural drought in forest soils. Methan-
otrophs responded quickly to water table manipulations in peat soil (Blodau and Moore,
2003). Rewetting also can inhibit methanotrophic activity in more poorly drained soils,
for example, if oxygen diffusion becomes limiting (Striegl, 1993). Because methano-
genesis requires anaerobic soil conditions, drought typically suppresses CH4 produc-25

tion, while rewetting increases it. Methanogenic populations require some time to re-
establish after rewetting (Fetzer et al., 1993).
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In addition to environmental controls, both methanotrophy and methanogenesis are
sensitive to interactions and competition with other microbial redox processes. Dry-
ing and rewetting of soils can increase SO4 pools through remineralization of organic
sulfate and/or reoxidation of iron sulfides. This can stimulate sulfate reduction and
effectively suppress methanogenesis (cf. Blodau and Moore, 2003). In thick organic5

soils, this is more likely to occur in surface layers that experience fluctuating water
tables than in more saturated, deeper peat layers (Goldhammer and Blodau, 2008).

Freezing increases substrate availability (Sect. 3.1) and limits diffusive transport of
gases (including O2) into and out soil, which could promote methanogenesis and the
storage of CH4 in deeper soil layers (Yu et al., 2007). Also CH4 typically accumulates10

subsurface in snow or ice covered ecosystems. During thawing periods, the diffusion
barriers disappear, and trapped CH4 is released to the atmosphere (Friborg et al.,
1997; Yu et al., 2007). Methane emissions were independent of temperature below
freezing point (Friborg et al., 1997; Yu et al., 2007), suggesting that biological activity
was not the dominant control on soil CH4 flux during early soil thaw. However, as the15

soil active layer becomes thicker, soil CH4 fluxes will be driven by soil aeration and
redox controls on methanotrophy and methanogenesis, as described above for rewet-
ting. In particular, due to poor drainage of melting snow and seasonal ice, thawing
can create saturated surface soils in the active layer, which can favour CH4 production
(Thauer, 1988) and suppress methanotrophy. In contrast, Ding and Cai (2007) found20

that low temperatures reduced microbial activity of some aerobic microbes, and the
resulting presence of more O2 in soil increased methanotrophy and reduced methano-
genesis. Overall, to our knowledge the mechanisms and drivers responsible for the
various response of CH4 to rewetting and thawing have not been clearly explored and
further research is needed to identify the mechanisms controlling the response after25

rewetting and thawing at multiple ecosystems.
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3.3 Nitrous oxide flux from rewetting and thawing

3.3.1 General patterns of responses

Three main processes produce N2O in soils: (1) nitrification, the stepwise oxidation of
NH3 to nitrite (NO−

2 ) and to nitrate (NO−
3 ) (Kowalchuk and Stephen, 2001); (2) deni-

trification, the stepwise reduction of NO−
3 to NO−

2 , NO, N2O and ultimately N2, where5

facultative anaerobic bacteria use NO−
3 as an electron acceptor in the respiration of

organic material under low oxygen (O2) conditions (Knowles, 1982); and (3) nitrifier
denitrification, which is carried out by autotrophic NH3-oxidizing bacteria and the path-
way whereby NH3 is oxidized to nitrite NO−

2 , followed by the reduction of NO−
2 to nitric

oxide NO, N2O and molecular nitrogen (N2) (Wrage et al., 2001).10

Field studies have observed increased soil N2O flux following wetting in cropland
(Barton et al., 2008), grazed pasture (Kim et al., 2010a), tropical forest (Butterbach-
Bahl et al., 2004), grassland (Hao et al., 1988), savannah (Martin et al., 2003), and
fen (Goldberg et al., 2010a). Laboratory incubation experiments with cropland (Beare
et al., 2009), forest (Dick et al., 2001), grassland (Yao et al., 2010), and peatland15

soils (Dinsmore et al., 2009) have yielded similar results of increased N2O flux after
rewetting. In tropical soils in Costa Rica, N2O flux pulses began within 30 min, peaking
no later than 8 h after rewetting, and 25 g N2O-N ha−1 was emitted for three simulated
rain events over a 22-day period (control emitted 14 g N2O-N ha−1), and one episodic
N2O production event driven by one moderate rain accounted for 15–90 % of the total20

weekly production (Nobre et al., 2001). These studies have observed a short-term
(ca., 12 h) up to 15 d N2O response following rewetting (Table 2), and an increase of
N2O flux up to 80 000 % with respect to the background conditions (Table 2, Fig. 2).
Significantly, our dataset reveals that even a single wetting event can affect annual
N2O flux (from 2 % up to 50 %) (Nobre et al., 2001; Barton et al., 2008; Goldberg et al.,25

2010a).
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Increased soil N2O flux following thawing has been observed in cropland (Rochette
et al., 2010), grassland (Virkajärvi et al., 2010), forest (Maljanen et al., 2010), marsh (Yu
et al., 2007), alpine meadow (Hu et al., 2010), and alpine tundra (Brooks et al., 1997).
Laboratory incubation experiments showing similar results have been performed with
agricultural (Kurganova et al., 2004), grassland (Yao et al., 2010), forest (Goldberg et5

al., 2008), permafrost (Elberling et al., 2010), and coastal Antarctica soils (Zhu et al.,
2009). Episodic N2O peak fluxes of up to 750 µg N2O-N m−2 h−1 (background levels of
under 50 µg N2O-N m−2 h−1) were measured after freeze-thaw in arable field (Dörsch
et al., 2004). Such increases usually occur when soil temperatures are close to 0 ◦C
(Christensen and Tiedje, 1990; Chen et al., 1995; Müller et al., 2003). Studies examin-10

ing the thawing effect on N2O flux have reported 6 to 35 d response following rewetting
(Table 2) and N2O fluxes increase up to 17 000 % (Table 2, Fig. 2). Thaw-induced N2O
fluxes constituted a major component of annual N2O fluxes from arable field (Regina
et al., 2004; Johnson et al., 2010), temperate grassland (Kammann et al., 1998; Müller
et al., 2002), steppe (Holst et al., 2008; Wolf et al., 2010), wetland (Yu et al., 2007) and15

forest ecosystems (Papen and Butterbach-Bahl, 1999; Wu et al., 2010a; Guckland et
al., 2010) with contributions exceeding 50 % of the annual budget in some years.

3.3.2 Mechanisms and drivers

The mechanisms responsible for increased N2O flux following rewetting have been
commonly hypothesized as belonging to two categories: (1) enhanced substrate sup-20

ply, and (2) the physical mechanisms described above (Sect. 3.1.). Similarly, the en-
hanced substrate supply described above (see Sect. 3.1.) and the physical mecha-
nisms have been hypothesized as responsible for increased N2O fluxes following thaw-
ing. The hypothesized physical mechanisms for increased N2O fluxes following thawing
are: first, anaerobic water-saturated topsoil conditions are created during thawing by25

reduced drainage of melting ice and snow in the frozen subsoil, and these conditions
are known to increase N2O fluxes (Li et al., 2000; de Bruijn et al., 2009). Second,
ice layers prevent N2O exchange between topsoil and atmosphere and during thawing
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periods, the diffusion barriers disappear, and the trapped N2O is released into the at-
mosphere within a few days (Goldberg et al., 2010b; Virkajärvi et al., 2010). Increased
N2O fluxes following thawing may be caused by the combination of these two mecha-
nisms (Koponen et al., 2006; de Bruijn et al., 2009).

The relative contribution of specific microbial processes (e.g. nitrification, denitrifica-5

tion and nitrifier denitrification) to changes in N2O fluxes following rewetting and thaw-
ing is still poorly understood, although several studies have found denitrification to be
a major contribution process in N2O fluxes following rewetting (Groffman and Tiedje,
1988; Priemé and Christensen, 2001) and thawing (Mørkved et al., 2006; Sharma et
al., 2006; Wagner-Riddle et al., 2008).10

The magnitude of increased N2O flux caused by the wetting of dry soils varies de-
pending on the labile N soil pool (Van Gestel et al., 1993; Schaeffer et al., 2003), soil
texture (Appel, 1998; Austin et al., 2004), soil water content (Appel, 1998), the size
of the rewetting pulse (Ruser et al., 2006; Yanai et al., 2007), length of drought (van
Haren et al., 2005), and soil compaction (Uchida et al., 2008; Beare et al., 2009). A sig-15

nificant relationship between the organic N extracted from dried soil samples and the
magnitude of N2O flushes following soil drying-rewetting has been observed (Appel,
1998). Field and laboratory studies with arid and semiarid soils, fine-textured soils with
higher water-holding capacity and labile C and N pools compared with coarse-textured
soils, showed a greater flush of N2O flux following rewetting (Austin et al., 2004). In20

an incubation experiment with soils from a potato field, the amount of increase in N2O
flux following rewetting was enhanced with the amount of water added (Ruser et al.,
2006). Furthermore, in another experiment with soils from a field compaction trial, the
production of N2O during the first 24 h following rewetting of dry soil was nearly 20
times higher in compacted than in uncompacted soil (Beare et al., 2009).25

The magnitude of increased N2O flux following thawing of frozen soils is influenced
by soil texture (Christensen and Christensen, 1991; Lemke et al., 1998), crop species
(Kaiser et al., 1998; Johnson et al., 2010), forest type (Teepe and Ludwig, 2004),
tillage history (Singurindy et al., 2009), soil water content (Koponen and Martikainen,
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2004; Wolf et al., 2010), the length of the freezing period (Papen and Butterbach-Bahl,
1999; Wagner-Riddle et al., 2007; Dietzel et al., 2011), and the degree of ice formation
(Wagner-Riddle et al., 2010). Soils with clay-dominated aggregates are prone to high
N2O flux during thawing periods (van Bochove et al., 2000; Müller et al., 2003). How-
ever, there is little information on the subsequent effect of soil water content on N2O5

fluxes (Röver et al., 1998; van Bochove et al., 2000). For example, Röver et al. (1998)
measured large fluxes of N2O after freezing in an agricultural soil at 80 % water-filled
pore space, while van Bochove et al. (2000) reported that the N2O fluxes from a clay
soil were significantly larger at a volumetric water content of 39 % than at 28 %.

3.4 Nitric oxide flux from rewetting and thawing10

3.4.1 General patterns of responses

Nitric oxide can be produced from: (1) nitrification (Kowalchuk and Stephen,
2001); (2) denitrification (Knowles, 1982); and (3) nitrifier denitrification (Wrage et al.,
2001) as described in Sect. 3.3. Increases in soil NO flux following rewetting have been
reported in various terrestrial ecosystems, including cropland (Guenzi et al., 1994),15

grazing pasture (Hutchinson and Brams, 1992), forest (Wu et al., 2010a), grassland
(Hartley and Schlesinger, 2000), savanna (Martin et al., 2003), and desert (McCalley
and Sparks, 2008). Laboratory incubations with grassland soil (Yao et al., 2010), graz-
ing pasture soil (Hutchinson et al., 1993), forest soil (Dick et al., 2006), and desert soil
(McCalley and Sparks, 2008) have reported similar results of increased NO flux after20

rewetting. NO rewetting studies have commonly reported a short-term (ca., 1–3 d) re-
sponse following rewetting (Table 2), and the rate of increase of NO flux ranged from
40 % to more than 800 000 % (Table 2, Fig. 2). Some studies indicate that even a sin-
gle rewetting event could substantially affect the annual flux rates of NO (Davidson et
al., 1991; Yienger and Levy, 1995; Kitzler et al., 2006), and rewetting events could be25

important for regional fluxes (Harris et al., 1996; Ghude et al., 2010).
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Increased soil NO fluxes following thawing have been observed only in a field study
(Laville et al., 2011) and in a laboratory incubation study (Yao et al., 2010). In a French
crop field, NO fluxes following thawing increased up to 10 ng N m−2 s−1 and decreased
to pre-event values within 24 h while the flux average was 1.7 to 2.3 ng N m−2 s−1

in two years (Laville et al., 2011). Incubation with the soils of steppe, mountain5

meadow, sand dune, and marshland in Inner Mongolia showed that NO fluxes were
0.5–8.0 µg N m−2 h−1 at −10 ◦C and they increased to around 30 µg N m−2 h−1 following
thawing (at 5 ◦C) (Yao et al., 2010).

3.4.2 Mechanisms and drivers

The mechanisms responsible for increased NO fluxes following rewetting have been10

commonly hypothesized as belonging to the two categories: (1) enhanced microbial
metabolism by substrate supply and (2) physical mechanisms described above (see
Sect. 3.1.). Several studies found that nitrification is the dominant source of increased
NO flux following wetting of dry soils (Davidson, 1992a; Davidson et al., 1993; Hutchin-
son et al., 1993). The magnitude of increased NO flux can be influenced by the du-15

ration and severity of antecedent dry periods (Butterbach-Bahl et al., 2004; McCalley
and Sparks, 2008), change in soil moisture (Yienger and Levy, 1995) and tempera-
ture (Smart et al., 1999; McCalley and Sparks, 2008), vegetation type (Barger et al.,
2005; McCalley and Sparks, 2008), soil type (Martin et al., 2003), microbial demand
for N (Stark et al., 2002), frequency of wetting events (Davidson et al., 1991; Hartley20

and Schlesinger, 2000), previous disturbances (Levine et al., 1988; Poth et al., 1995),
and agricultural management (Hutchinson and Brams, 1992). Interestingly, there are
conflicting results on the magnitude of increased NO flux after rewetting, which were
independent of both the size of rewetting pulse (Davidson, 1992b; Martin et al., 1998)
and the periods of antecedent dry days (Martin et al., 1998). Also, other reports have25

suggested that lower amounts of water addition result in higher NO pulses (Hutchinson
et al., 1997; Dick et al., 2001). These conflicting results emphasize the uncertainty and
limitations of predicting the magnitude of NO flux responses to soil rewetting. There
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is limited literature on NO flux after thawing, and further research is needed to identify
the mechanisms controlling the response after thawing at multiple ecosystems.

3.5 Ammonia flux from rewetting and thawing

3.5.1 General patterns of responses

Soil NH3 is primarily produced when ammonium ions (NH+
4 ) dissociate into gaseous5

NH3 under alkaline conditions, and NH3 flux is sensitive to soil conditions that influ-
ence NH+

4 concentrations (Schlesinger and Peterjohn, 1991; McCalley and Sparks,
2008). Increases in soil NH3 flux following rewetting have been observed mainly in
deserts (Schlesinger and Peterjohn, 1991; McCalley and Sparks, 2008). In the Chi-
huahuan Desert, USA, simulated rainfall increased NH3 fluxes from 15 µg N m−2 d−1 to10

95 µg N m−2 d−1 within 24 h and the fluxes declined as the soils dried during the next
7 days (Schlesinger and Peterjohn, 1991). Similarly, increased NH3 fluxes following a
natural rainfall were 5–10 times higher than pre-rain fluxes in the Mojave Desert, USA
(McCalley and Sparks, 2008). Studies examining how rewetting affects NH3 flux have
commonly reported 7 d response following rewetting (Table 2), with the rate of NH3 flux15

increase ranging from 200 % to >1000 % (Table 2, Fig. 2). To our knowledge, increase
in soil NH3 flux following thawing has not been observed.

3.5.2 Mechanisms and drivers

The mechanisms responsible for the response of NH3 to rewetting have not been ex-
plored to our knowledge. It is hypothesized that increase in NH+

4 caused by enhanced20

N mineralization following rewetting (Tomoaki Morishita, unpublished data) and rewet-
ting promotes reaction between NH+

4 and OH−, without biota (James Raich, unpub-
lished data) result in increased NH3 flux. The magnitude of increased NH3 flux follow-
ing rewetting of dry soils can be influenced by land cover type and soil temperature
(Schlesinger and Peterjohn, 1991; McCalley and Sparks, 2008). There is a limited25
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literature on NH3 flux and further research is needed to identify the mechanisms con-
trolling the response after rewetting at multiple ecosystems.

3.6 Overall change of gases fluxes following rewetting and thawing

An analysis of published field studies (n= 142) showed that CO2, CH4, N2O, NO and
NH3 fluxes following rewetting and thawing increase from pre-event fluxes following a5

power function, with no significant difference between these events (thawing versus
rewetting) or among gases. Thus, the overall response is represented by the following
equation (Fig. 3, Eq. 2).

ln (Peakfluxpost−event)=2.08 (±0.11)+0.88 (±0.03)ln (Fluxpre−event),

R2 =0.90,N =14210

Peakfluxpost−event =8.0(±1.1)×Flux0.88(±0.03)
pre−event (2)

Similarly, laboratory studies (n= 10) showed that CO2 and N2O fluxes following rewet-
ting and thawing increase from pre-event fluxes also following a power function, with
no significant difference between these events or gases. Thus, the overall response is
represented by the following equation (Fig. 3, Eq. 3).15

ln (Peakfluxpost−event)=3.06 (±0.71)+0.76 (±0.17)ln (Fluxpre−event),

R2 =0.69,N =10

Peakfluxpost−event =21.3(±2.0)×Flux0.76(±0.17)
pre−event (3)

4 Knowledge gaps and future directions

4.1 Uncertainties in understanding of the responses20

In general, rewetting or thawing are associated with increases in CO2, N2O, NO and
NH3 fluxes, substantially affecting seasonal and annual flux budgets. However, some
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studies showed no response or small increased fluxes following rewetting or thawing
events that did not substantially affect annual flux rates (Garcia-Montiel et al., 2003;
Neill et al., 2005; Muhr and Borken, 2009; Muhr et al., 2010). Some studies showed
reduced CO2 or N2O fluxes during drying periods, but the abruptly increased fluxes
following rewetting did not compensate for the reduced or nil uptake rates during the5

dry period at the seasonal scale (Borken and Matzner, 2009; Goldberg and Gebauer,
2009; Joos et al., 2010).

Overall, the scientific community lacks a good understanding both of the responses
of soil gases following rewetting or thawing and of their impact on annual budgets. First,
this is because of the relative few studies on this topic. Second, many studies report10

the magnitude of peak flux or increased rate of flux following rewetting or thawing, but
often do not identify: (1) whether peak fluxes are significantly different from fluxes of
pre-drought or pre-frozen periods, (2) the change in soil moisture or soil temperature,
(3) the time lag between rewetting or thawing events and peak fluxes, (4) peak flux
durations, (5) cumulative emissions in peak fluxes, and (6) their contributions to annual15

budgets. Efforts to collect such information will contribute to improving our understand-
ing of the response of gas fluxes to rewetting and thawing events.

Changes in the relative proportion of CO2, CH4, N2O, NO and NH3 (e.g. CO2/CH4)
emitted following rewetting and thawing compared with that of pre-disturbance condi-
tions are poorly understood. To report these ratios and the change, additional efforts20

are required to conduct multiple gases measurements. This is important since a good
understanding of the variation of the relative proportion will improve our understanding
of the impact of rewetting or thawing on annual gas budgets.

The effect of rewetting and thawing on dissolved soil gas has been only rarely studied
(Matzner and Borken, 2008). To our knowledge, there is only one study showing indi-25

rect evidence of this effect, which found that in spring rainfall after thawing increased
concentration of dissolved N2O in soil solutions in forest (Xu et al., 2009). These result
suggests that the increased N2O following rewetting can be dissolved in the soil solu-
tion (Xu et al., 2009). This N2O in the soil solution can drain to surface or groundwater,
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and be a source of indirect N2O flux (IPCC, 2006). It is therefore important to under-
stand and quantify the effect of rewetting and thawing on dissolved soil gases.

4.2 Uncertainties in understanding of mechanisms and drivers

Enhanced nutrient supply from soil freezing has been accepted as one of the mecha-
nisms to explain abruptly increased N2O fluxes. However, Hentschel et al. (2009) found5

that moderate soil freezing did not affect solute losses of N, DOC, and mineral ions from
temperate forest soils, and argued that their results did not support the hypothesis that
N2O peak fluxes are caused by the enhanced nutrient supply from soil freezing (Gold-
berg et al., 2010b). While it has been argued that N2O peak flux at spring thaw is
mostly produced in the surface layer (Müller et al., 2002; Furon et al., 2008; Wagner-10

Riddle et al., 2008), Goldberg et al. (2010b) found that released N2O in soil thawing is
due to a slow release of subsoil N2O and a delayed activation of N2O reductase in the
topsoil after soil frost due to low soil temperatures. The relative importance of source
processes responsible for the increased fluxes of CO2(i.e. autotrophic or heterotrophic
activity), NO and N2O (i.e. nitrification, denitrification or nitrifier denitrification) is poorly15

understood.
In terms of drivers of the response, we observed conflicting results on the magni-

tude of increased NO flux after rewetting (see Sect. 3.4). How different vegetation
types respond to rewetting and thawing events (Teepe and Ludwig, 2004; Matzner and
Borken, 2008; Kim et al., 2010b; Shi et al., 2011) is also unclear. This is important20

because different vegetation types can have different phenologies and photosynthesis
rates (Vargas et al., 2010b), nutrient cycling rates in detritus (Vogt et al., 1986), and
soils (Borken and Beese, 2005; Paré et al., 2006). Plant-mediated effects on soil mi-
croclimate, such as soil temperature and soil moisture (Raich and Schlesinger, 1992;
Aussenac, 2000), and plant mediated effects on root and rhizomorph dynamics (Var-25

gas and Allen, 2008) are also only beginning to be explored. Novel mechanisms and
pathways by which plants emit gas have been explored recently (Smart and Bloom,
2001; Pihlatie et al., 2005; Keppler et al., 2006; Aubrey and Teskey, 2009; Gauci et al.,
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2010), but how these pathways respond to rewetting or thawing events has been little
studied.

Compared to CO2 and N2O fluxes, our understanding of the effect of rewetting and
thawing on CH4, NO and NH3 fluxes and mechanisms and drivers of the variation
is limited, with large uncertainties. We encourage the scientific community to perform5

experiments and observations to better understand their magnitudes and mechanisms.

4.3 Temporal and spatial resolution

Considering the short response time and short effective period of the pulse in soil gas
fluxes, many peak fluxes might have been missed in previous studies, as frequently
only a few manual measurements were used (Joos et al., 2010; Maljanen et al., 2010).10

The lack of temporal sampling resolution may also influence the estimation of annual
fluxes. In contrast, substantial rewetting effects have been frequently observed with
automated chamber systems (Borken et al., 1999: 4–5 observation per a day), eddy
covariance methods (cf. Lee et al., 2004; Kim et al., 2010a) and automated measure-
ments of soil CO2 profiles (Vargas et al., 2010b). Such continuous flux measurements15

during and after pulse events will help calculate the temporal dynamics and the to-
tal contribution to the cumulative flux and annual flux (Maljanen et al., 2010; Vargas et
al., 2010a). When manual chamber methods have to be used, more frequent measure-
ments (Smith and Dobbie, 2001; Parkin, 2008) or measurements coinciding with rewet-
ting or thawing events (Beare et al., 2009; Kim et al., 2010b) should be considered.20

Most studies have explored the effects of rewetting and thawing at small spatial
scales (i.e. plot level). Thus, a critical issue is how to scale up to the ecosystem, land-
scape or continental scale. Rewetting and thawing pulses may be patchily distributed
in space, and without measurements at multiple spatial and temporal scales (i.e. cham-
bers, eddy covariance, upscaling through remote sensing) it is difficult to evaluate the25

impacts of these events across regions of the Earth. Although multi-spatial scale sam-
pling is needed, we recognize that there is frequently a cost trade-off between temporal
sampling and spatial sampling. However, with improving technologies and the growth
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of continental and global networks (i.e. NEON, ICOS, FLUXNET) multi-temporal and
multi-scale experiments will become more common in the near future.

4.4 Experimental settings

To test the effect of rewetting and thawing on soil gas flux, controlled experiments
have been frequently conducted both in field and laboratory settings using, for ex-5

ample, rainfall exclusions (Borken et al., 2006; Davidson et al., 2008), snow removal
(Groffman et al., 2006; Maljanen et al., 2007), and soil cores incubated in the lab
(Panikov, 2000). However, these conditions may not accurately simulate natural con-
ditions (Henry, 2007). Future experiments might: (1) simulate drying-rewetting and
freezing-thawing based on historical or projected extreme events, the latter under mul-10

tiple climate change scenarios (Jentsch et al., 2007); (2) collect soil samples in the
appropriate season and include relevant surface factors such as plant litter in the au-
tumn or excess water in the spring (Henry, 2007); and (3) develop new methods for
simulating field conditions more closely in the laboratory (Hu et al., 2006). Future stud-
ies could benefit from these approaches in combination with high-temporal frequency15

resolution using automated flux measurements.
An area of significant promise involves combining microbial community analyses

(Kim et al., 2008; Smith et al., 2010; Sawicka et al., 2009) and/or stable isotope tech-
niques (Wagner-Riddle et al., 2008; Goldberg et al., 2009; Gaudinski et al., 2009) with
flux measurements. Whether performed in the lab or field, such experiments could im-20

prove our understanding of rewetting and thawing effect on soil gas fluxes, quantifying
the relationship between the control factors and their impact.

4.5 Model improvement

Models are promising tools for evaluating the importance of drying-rewetting and
freeze-thaw events (Groffman et al., 2009). Simple linear regressions and empiri-25

cal models have been developed based on the relationships between environmental
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factors including soil moisture and/or soil temperature and soil gas fluxes (Roelandt et
al., 2005; Flechard et al., 2007). Some rely on empirical observations but fail under
rewetting or thawing conditions (Borken et al., 2003; Lawrence et al., 2009). We pro-
pose that further work in this area will increasingly have to incorporate non-linearities in
the flux response and the actual substrate and microbial dynamics occurring (Davidson5

and Janssens, 2006; Vargas et al., 2011).
Process-based models have been developed with the objective of simulating ter-

restrial ecosystem C and N biogeochemistry including GHGs (e.g. DAYCENT, Parton
et al., 2001; DNDC, Li et al., 1992; ecosys, Grant and Pattey, 2003). Most exist-
ing process-based models require additional work to improve simulating rewetting and10

thawing effect on soil gas fluxes (Jarecki et al., 2009; Norman et al., 2008; Kariyap-
peruma et al., 2011). Groffman et al. (2009) suggested that modelling peak fluxes as-
sociated with drying and rewetting events requires: (1) accurate simulation of moisture
changes in different soil layers and complex shifts in utilisation of fast- and slow-cycling
soil organic matter pools by microbes that take place during these events (Miller et15

al., 2005), and (2) daily or sub-daily simulations of both physical and biological pro-
cesses (Kiese et al., 2005). They also suggested that the modelling of freeze-thaw
induced N2O fluxes requires consideration of the increase in easily degradable sub-
strates following freezing, tight coupling of nitrification and denitrification in the water
saturated topsoil, and the breakdown of N2O reductase activity at low temperature20

(Holtan-Hartwig et al., 2002). Regardless of the specific process under consideration,
it is critical to enhance the communication between field scientists and the modelling
community, as models can be use to generate hypotheses (de Bruijn et al., 2009) to be
tested in the field and lab.

5 A Blog for open discussion and web based open databases25

The scientific community is taking advantage of sharing capabilities from the Internet
by creating open-access databases (Stehfest and Bouwman, 2006; Bond-Lamberty
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and Thomson, 2010; Reichman et al., 2011) of both published and unpublished data
sets. We have created a “Blog” (web-based discussion) entitled “Rewetting, thaw-
ing and soil gas fluxes” (http://rewettingandthawing.blogspot.com/), to provide a place
where the scientific community can share and update the fast growing knowledge and
data on the study of the effect of rewetting and thawing on CO2, CH4, N2O, NO and5

NH3 fluxes. This blog provides two major functions. First, we have uploaded a current
version of this review paper section by section as an individual post in the Blog; com-
ments can be left under the separate posts. For instance, anyone can correct a
potential error, update, or comment on a section. Second, open-access databases,
which can be modified by the users, are linked to the Blog: “Rewetting, thaw-10

ing and soil gas fluxes database” (https://spreadsheets.google.com/spreadsheet/ccc?
key=0AjWu6bR8SA9idHY4Tk5TdDZDMWgtMEJsUVhFOWhKLWc\&hl=en US). The
database contains detailed information in the reported studies on soil gas peak flux
following rewetting and thawing such as experiment type (lab or field experiment), lo-
cation, site type, vegetation, climate, soil properties (soil bulk density, soil C, N and15

pH), rainfall, variation of soil moisture and soil gas flux by wetting and thawing, peak
soil gas flux properties (cumulative flux, peak lag time and duration of pulse), and the
corresponding references. The database is hosted in web-based spreadsheets and is
easily accessible and modified. Our hope is that researchers can thus easily utilize
the database, correct errors, and upload missed data or newly collected data. The au-20

thors do not have any relationship with the companies currently being used to host the
Blog and databases. Finally, version 1 of this database has been archived at the Oak
Ridge National Laboratory Distributed Active Archive Center (http://daac.ornl.gov/; in
progress) and is available for reproducing the results presented in this study.

6 Conclusions25

Rewetting and thawing events are important short term- transitional phenomena in
terms of hydrology and the thermodynamics of soil systems. Through this review and
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the compiled dataset, we identified that major soil gases such as CO2, CH4, N2O, NO
and NH3 are influenced substantially by these events. The mechanisms that control
these fluxes during rewetting and thawing events are not fully understood, but are crit-
ical for our understanding of C and N dynamics and land-atmosphere gas exchange.
Specifically we noted that there is a lack of studies on CH4, NO and NH3 fluxes. Future5

climatic change is likely to alter the frequency and intensity of drying-rewetting events
and thawing of frozen soils. Thus, rewetting and thawing events could become more
critical for land-atmosphere gas exchange and may be more important to incorporate
in biogeochemical models. Advancements in this research field are likely to come from
high frequency measurements of gas fluxes, soil microbial analyses, isotope measure-10

ments, and stronger collaborations between the process-based modelling community
and the experimental scientific community. Finally, we advocate for more open access
databases within the larger biogeoscience community that researchers can contribute
to, maintain/enhance, and utilize for synthesis activities.
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Table 1. Summary of effects of soil rewetting and thawing on soil gas CO2 and CH4 fluxes.
F = field observation; L= laboratory experiment.

Gas type Event Observed
ecosystems

Peak periods
(d)∗

Change rate
(%)∗

Mechanism Driver

CO2
Rewetting Croplands, grazing

pastures, forests,
grasslands, savan-
nas, deserts

F:3 (0.25–30),
L:4 (0.7–5.5)

F:140
(42–10880),
L:500
(112–3000)

1. Microbial metabolism can be enhanced by the availability
of accumulated substrate during soil drying periods.
2. Physical mechanisms involving infiltration, reduced diffusiv-
ity and gas displacement in the soil can influence gas flux.
3. Vegetation responses to rewetting can increase CO2 flux.

Size of soil organic
pool, the quality of or-
ganic matter, the prop-
erties of soil biota,
moisture state
conditions before
rewetting, successive
cycles, soil tempera-
ture, agricultural
management practice

Thawing Croplands, grazing
pastures, forests,
grasslands, alpine
tundra, arctic
heath, Antarctica

L: 1.5 (1.5–7) F:203
(158–5227),
L:500
(112–3900)

1. Microbial metabolism can be enhanced by the availability
of accumulated substrate during soil freezing periods.
2. Thawing could disrupt soil aggregates, exposing physically
protected organic matter and increase the accessibility of sub-
strate that can be rapidly mineralized.

Substance availability,
frost temperatures,
freeze-thaw event
frequency

CH4
Rewetting arable land,

peatland, tropical
forest;

F:2 (2–3),
L:2 (2–32)

F:76
(60–667),
L:−453
(−709–88.5)

1. Wetting increases the availability of water-soluble carbon
substrates and soil methanotrophs are able to use this carbon.
2. Water-soluble carbon substrates reduce O2 concentra-
tions and support soil methanogens which then supply CH4
to methanotrophs.
3. Drought typically suppresses CH4 production, while rewet-
ting increases it. Methanogenic populations require some time
to re-establish after rewetting
4. Drying and rewetting of soils can increase SO4 pools
through remineralization of organic sulfate and/or reoxidation
of iron sulfides. This can stimulate sulfate reduction
and effectively suppress methanogenesis.
5. Rewetting inhibits methanotrophic activity in more poorly
drained soils.

Not yet revealed

Thawing peatlands, forest,
mineral wetlands

L:7 F:433
(33–765),
L:1100

1. Freezing increases substrate availability and limits O2
transport into soil, both of which would promote methanogen-
esis and CH4 is stored in deeper soil layers.
2. During thawing periods, the diffusion barriers disappear,
and trapped CH4 is released to the atmosphere.
3. Thawing can create saturated surface soils in the active
layer, which can favour CH4 production and suppress
methanotrophy.
4. Low temperatures reduced microbial activity of some
aerobic microbes, and the resulting presence of more O2 in
soil increased methanotrophy and reduced methanogenesis.

Not yet revealed

*median (min.–max.)
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Table 2. Summary of effects of soil rewetting and thawing on soil gas N2O, NO and NH3 fluxes.
F = field observation; L= laboratory experiment.

Gas type Event Observed ecosys-
tems

Peak periods
(d)∗

Change rate (%)∗ Mechanism Driver

N2O
Rewetting Croplands, grazing

pastures, forests,
grasslands,
savannas, fen

F:2 (0.5–15),
L:4 (3–8)

F:800
(102–83 233),
L:4100
(100–439 700)

1. Microbial metabolism can be enhanced by the availability
of accumulated substrate during soil drying periods.
2. Physical mechanisms involving infiltration, reduced diffusiv-
ity and gas displacement in the soil can influence gas flux.

labile N soil pool,
soil texture, soil water
content, size of
the rewetting pulse,
length of drought, soil
compaction

Thawing Croplands, grazing
pastures, forests,
grasslands, marsh,
alpine tundra

F:35 (6–35),
L:6 (2–11)

F:1233
(253–17327),
L:1400
(100–100 000)

1. Microbial metabolism can be enhanced by the availability
of accumulated substrate during soil freezing periods.
2. Physical mechanisms involving reduced diffusivity can
influence N2O fluxes.

soil texture, crop
species, forest type,
tillage history, soil
water content, the
length of the freezing
period

NO
Rewetting Croplands, grazing

pastures, forests,
grasslands, savan-
nas, deserts

F:1 (1–3),
L:4 (0.2–7)

F:856
(43–810 400),
L:500
(50–11 500)

1. Microbial metabolism can be enhanced by the availability
of accumulated substrate during soil drying periods.
2. Physical mechanisms involving infiltration, reduced diffusiv-
ity and gas displacement in the soil can influence gas flux.

duration and severity
of antecedent dry pe-
riods, size of rewetting
pulse??, soil tempera-
ture, vegetation type,
soil type, microbial de-
mand for N, frequency
of wetting events,
previous disturbances
(i.e. fire), agricultural
management type

Thawing Cropland,
mountain meadow

F:400,
L:350 (40–500)

Not yet revealed Not yet revealed

NH3
Rewetting Deserts F:7 (7–7),

L:2 (2–2)
F:489
(200–1067),
L:550
(400–800)

Not yet revealed cover type, soil
temperature

Thawing Not observed

*median (min.–max.)
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Fig. 1. Hypothetical figures representing peak soil gas flux in rewetting of dry soils and thawing
of frozen soils and peak flux period. Peak gas flux occurred in natural rewetting or thawing
event (solid line) and pre-event flux value (white dot) and post-event peak flux value (black
dot) used to determine flux change rate (A); peak gas flux occurred in rewetting or thawing
treatment (solid line) and gas flux in control (dot line) and pre-event flux value (white dot, the
flux value in control when post-event peak flux value is read) and post-event flux value (black
dot) used to determine flux change rate (B).
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Fig. 2. Change rate (%) of soil gas CO2, CH4, N2O, NO and NH3 fluxes following soil rewetting
and thawing in field and laboratory experiments.
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Fig. 3. Relationship between CO2, CH4, N2O, NO and NH3 fluxes of pre- and post rewetting
and thawing events in the field studies and laboratory experiments. Axes units are mg gas
m−2 h−1 (for field measurements) and mg gas kg soil−1 h−1 (for lab incubations). The dashed
lines represent 1:1 relationship.
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Fig. 4. Histograms of the duration of enhanced flux of soil gas CO2, CH4, N2O, NO and NH3
fluxes following soil rewetting and thawing in field and laboratory experiments.
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